Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwort</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>Teil I Mathematisches Grundwissen</td>
</tr>
<tr>
<td>Kapitel 1 Mengen und Aussagen</td>
</tr>
<tr>
<td>1.1 Grundbegriffe der Mengenlehre</td>
</tr>
<tr>
<td>1.2 Grundlegende Zahlbereiche</td>
</tr>
<tr>
<td>1.3 Verknüpfungen von Mengen</td>
</tr>
<tr>
<td>1.4 Aussagen und deren logische Verknüpfungen</td>
</tr>
<tr>
<td>1.5 Potenzmenge und kartesisches Produkt</td>
</tr>
<tr>
<td>1.6 Zur Bildung von mehrfachen Verknüpfungen</td>
</tr>
<tr>
<td>1.7 Verknüpfungen bei beliebigen Indexmengen</td>
</tr>
<tr>
<td>1.8 Exkurs</td>
</tr>
<tr>
<td>1.9 Übungsaufgaben</td>
</tr>
<tr>
<td>Kapitel 2 Grundwissen über Zahlen</td>
</tr>
<tr>
<td>2.1 Vollständige Induktion</td>
</tr>
<tr>
<td>2.2 Primfaktorzerlegung</td>
</tr>
<tr>
<td>2.3 Darstellungen ganzer Zahlen</td>
</tr>
<tr>
<td>2.4 Der Euklidische Algorithmus</td>
</tr>
<tr>
<td>2.5 Exkurs</td>
</tr>
<tr>
<td>2.6 Übungsaufgaben</td>
</tr>
<tr>
<td>Kapitel 3 Abbildungen, Äquivalenzen und Ordnungen</td>
</tr>
<tr>
<td>3.1 Grundlagen über Relationen</td>
</tr>
<tr>
<td>3.2 Der Abbildungsbegriff</td>
</tr>
<tr>
<td>3.3 Besonderheiten bei endlichen Mengen</td>
</tr>
<tr>
<td>3.4 Gleichmächtigkeit</td>
</tr>
<tr>
<td>3.5 Ordnungsrelationen</td>
</tr>
<tr>
<td>3.6 Äquivalenzrelationen</td>
</tr>
<tr>
<td>3.7 Exkurs</td>
</tr>
<tr>
<td>3.8 Übungsaufgaben</td>
</tr>
<tr>
<td>Kapitel 4 Grundlagen der Kombinatorik</td>
</tr>
<tr>
<td>4.1 Grundregeln des Zähls</td>
</tr>
<tr>
<td>4.2 Binomialkoeffizienten</td>
</tr>
<tr>
<td>4.3 Abbildungen auf endlichen Mengen</td>
</tr>
<tr>
<td>4.4 Grundlegendes über Permutationen</td>
</tr>
</tbody>
</table>
INHALTSVERZEICHNIS

4.5 Die Siebformel .. 108
4.6 Aus der diskreten Wahrscheinlichkeits-rechnung 114
4.7 Grundbegriffe der Codierungstheorie 126
4.8 Übungsaufgaben ... 135

Teil II Aus Algebra und Zahlentheorie 143

Kapitel 5 Algebraische Grundstrukturen 145
5.1 Monoide ... 146
5.2 Gruppen ... 149
5.3 Untergruppen ... 152
5.4 Gruppen-Homomorphismen .. 155
5.5 Kongruenzrelationen und Faktorgruppen 158
5.6 Ringe und Körper ... 163
5.7 Ideale und Faktorringe ... 167
5.8 Verbände und Boole’sche Algebren 172
5.9 Übungsaufgaben ... 175

Kapitel 6 Restklassenringe und komplexe Zahlen 183
6.1 Rechnen modulo n .. 184
6.2 Das RSA-Public-Key-Cryptosystem 189
6.3 Prüfzeichencodierung ... 194
6.4 Der Chinesische Restsatz .. 196
6.5 Der Körper der komplexen Zahlen 201
6.6 Übungsaufgaben ... 205

Kapitel 7 Vektoren und Matrizen 209
7.1 Vektorräume ... 210
7.2 Teilräume und deren Erzeugung 214
7.3 Lineare Abbildungen ... 217
7.4 Matrixalgebren ... 219
7.5 Übungsaufgaben ... 224

Kapitel 8 Lineare Gleichungssysteme 229
8.1 Die Struktur der Lösungsmenge 230
8.2 Die Lösungsmenge bei einer Gleichung 232
8.3 Elementare Zeilenumformungen 238
8.4 Treppenmatrizen und der Gauß-Algorithmus 240
8.5 Die Lösungsmenge bei allgemeinen Problemen 245
8.6 Invertierbare Matrizen .. 250
8.7 Übungsaufgaben ... 255
Kapitel 9 Zur Theorie abstrakter Vektorräume 261
 9.1 Basen ... 262
 9.2 Die Dimension eines Vektorraumes 266
 9.3 Beschreibung linearer Abbildungen 269
 9.4 Eigenwerte und Eigenvektoren 275
 9.5 Orthogonalraum und Hamming-Codes 280
 9.6 Nicht endlich erzeugbare Vektorräume 285
 9.7 Übungsaufgaben ... 288

Kapitel 10 Polynome 295
 10.1 Polynomringe ... 296
 10.2 Arithmetische Eigenschaften von Polynomen 302
 10.3 Auswertung und Nullstellen ... 308
 10.4 Interpolation ... 312
 10.5 Restklassenringe bei Polynomen 317
 10.6 Anwendungen in der linearen Algebra 319
 10.7 Übungsaufgaben ... 321

Kapitel 11 Rationale Funktionen und formale Potenzreihen 329
 11.1 Der Ring der formalen Potenzreihen 330
 11.2 Der Körper der rationalen Funktionen 332
 11.3 Partialbruchzerlegung .. 333
 11.4 Übungsaufgaben ... 339

Teil III Grundlagen der Analysis 341

Kapitel 12 Grundlagen über reelle Zahlen 343
 12.1 Angeordnete Körper ... 344
 12.2 Archimedische und vollständige Körper 350
 12.3 Wurzeln ... 354
 12.4 Die reellen Zahlen als Dedekind-Schnitte 356
 12.5 Absolutbetrag und Bewertungen 359
 12.6 Übungsaufgaben ... 362

Kapitel 13 Folgen 365
 13.1 Häufungspunkte und Grenzwerte 366
 13.2 Die Grenzwertsätze ... 371
 13.3 Beschränktheit, Monotonie und Konvergenz 373
 13.4 Cauchy-Folgen ... 381
 13.5 Landau-Symbole ... 383
 13.6 Übungsaufgaben ... 387
<table>
<thead>
<tr>
<th>Kapitel 14 Reihen</th>
<th>393</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Konvergenzkriterien</td>
<td>394</td>
</tr>
<tr>
<td>14.2 Potenzreihen</td>
<td>402</td>
</tr>
<tr>
<td>14.3 Umordnungen von Reihen</td>
<td>407</td>
</tr>
<tr>
<td>14.4 Reihendarstellungen rationaler und reeller Zahlen</td>
<td>409</td>
</tr>
<tr>
<td>14.5 Übungsaufgaben</td>
<td>415</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kapitel 15 Stetige Funktionen</th>
<th>421</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Der Stetigkeitsbegriff</td>
<td>422</td>
</tr>
<tr>
<td>15.2 Eigenschaften stetiger Funktionen</td>
<td>429</td>
</tr>
<tr>
<td>15.3 Stetigkeit bei Funktionenfolgen und Potenzreihen</td>
<td>432</td>
</tr>
<tr>
<td>15.4 Exponential- und Logarithmusfunktionen</td>
<td>435</td>
</tr>
<tr>
<td>15.5 Trigonometrische Funktionen</td>
<td>442</td>
</tr>
<tr>
<td>15.6 Übungsaufgaben</td>
<td>447</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kapitel 16 Differentialrechnung</th>
<th>451</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Die Ableitung einer Funktion</td>
<td>452</td>
</tr>
<tr>
<td>16.2 Ableitungsregeln</td>
<td>456</td>
</tr>
<tr>
<td>16.3 Mittelwertsätze und Extrema</td>
<td>461</td>
</tr>
<tr>
<td>16.4 Approximation durch Taylor-Polynome</td>
<td>468</td>
</tr>
<tr>
<td>16.5 Zur iterativen Lösung von Gleichungen</td>
<td>473</td>
</tr>
<tr>
<td>16.6 Übungsaufgaben</td>
<td>477</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kapitel 17 Integralrechnung</th>
<th>481</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Integration von Treppenfunktionen</td>
<td>482</td>
</tr>
<tr>
<td>17.2 Riemann-integrierbare Funktionen</td>
<td>485</td>
</tr>
<tr>
<td>17.3 Integration als Umkehrung der Differentiation</td>
<td>488</td>
</tr>
<tr>
<td>17.4 Integrationsregeln</td>
<td>491</td>
</tr>
<tr>
<td>17.5 Uneigentliche Integrale</td>
<td>496</td>
</tr>
<tr>
<td>17.6 Integration bei Funktionenfolgen</td>
<td>499</td>
</tr>
<tr>
<td>17.7 Übungsaufgaben</td>
<td>504</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literaturverzeichnis</th>
<th>509</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbolverzeichnis</td>
<td>511</td>
</tr>
<tr>
<td>Sachregister</td>
<td>517</td>
</tr>
</tbody>
</table>